Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nano Lett ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624178

RESUMO

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

2.
ACS Appl Mater Interfaces ; 16(11): 13422-13438, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442213

RESUMO

Current treatment for chronic infectious wounds is limited due to severe drug resistance in certain bacteria. Therefore, the development of new composite hydrogels with nonantibiotic antibacterial and pro-wound repair is important. Here, we present a photothermal antibacterial composite hydrogel fabricated with a coating of Fe2+ cross-linked carboxymethyl chitosan (FeCMCS) following the incorporation of melanin nanoparticles (MNPs) and the CyRL-QN15 peptide. Various physical and photothermal properties of the hydrogel were characterized. Cell proliferation, migration, cycle, and free-radical scavenging activity were assessed, and the antimicrobial properties of the hydrogel were probed by photothermal therapy. The effects of the hydrogel were validated in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection with full-thickness injury. This effect was further confirmed by changes in cytokines associated with inflammation, re-epithelialization, and angiogenesis on the seventh day after wound formation. The MNPs demonstrated robust photothermal conversion capabilities. The composite hydrogel (MNPs/CyRL-QN15/FeCMCS) promoted keratinocyte and fibroblast proliferation and migration while exhibiting high antibacterial efficacy, effectively killing more than 95% of Gram-positive and Gram-negative bacteria. In vivo study using an MRSA-infected full-thickness injury model demonstrated good therapeutic efficacy of the hydrogel in promoting regeneration and remodeling of chronically infected wounds by alleviating inflammatory response and accelerating re-epithelialization and collagen deposition. The MNPs/CyRL-QN15/FeCMCS hydrogel showed excellent antibacterial and prohealing effects on infected wounds, indicating potential as a promising candidate for wound healing promotion.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Melaninas , Peptídeos
3.
Animal Model Exp Med ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374532

RESUMO

BACKGROUND: We investigated the similarities and differences between two experimental approaches using tachy-pacing technology to induce desynchronized heart failure in canines. METHODS: A total of eight dogs were included in the experiment, four were tachy-paced in right ventricle apex (RVAP) and 4 were paced in right atrium after the ablation of left bundle branch to achieve left bundle branch block (RAP+LBBB). Three weeks of follow-up were conducted to observe the changes in cardiac function and myocardial staining was performed at the end of the experiment. RESULTS: Both experimental approaches successfully established heart failure with reduced ejection fraction models, with similar trends in declining cardiac function. The RAP+LBBB group exhibited a prolonged overall ventricular activation time, delayed left ventricular activation, and lesser impact on the right ventricle. The RVAP approach led to a reduction in overall right ventricular compliance and right ventricular enlargement. The RAP+LBBB group exhibited significant reductions in left heart compliance (LVGLS, %: RAP+LBBB -12.60 ± 0.12 to -5.93 ± 1.25; RVAP -13.28 ± 0.62 to -8.05 ± 0.63, p = 0.023; LASct, %: RAP+LBBB -15.75 ± 6.85 to -1.50 ± 1.00; RVAP -15.75 ± 2.87 to -10.05 ± 6.16, p = 0.035). Histological examination revealed more pronounced fibrosis in the left ventricular wall and left atrium in the RAP+LBBB group while the RVAP group showed more prominent fibrosis in the right ventricular myocardium. CONCLUSION: Both approaches establish HFrEF models with comparable trends. The RVAP group shows impaired right ventricular function, while the RAP+LBBB group exhibits more severe decreased compliance and fibrosis in left ventricle.

4.
Org Biomol Chem ; 22(9): 1850-1858, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345427

RESUMO

ß-Galactosidase (ß-gal), which is responsible for the hydrolysis of the glycosidic bond of lactose to galactose, has been recognized as an important biomarker of cell or organism status, especially cell senescence and primary ovarian cancer. Extensive efforts have been devoted to develop probes for detecting and visualizing ß-gal in cells. Herein, a fluorescent probe gal-HCA which possesses both excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) properties was prepared to monitor ß-gal in living cells. The probe consists of 2-hydroxy-4'-dimethylamino-chalcone (HCA) capped with a D-galactose group. The cleavage of the glycosidic bond in gal-HCA triggered by ß-gal releases HCA, which results in a significant bathochromic shift in fluorescence from 532 to 615 nm. The probe exhibited high selectivity and sensitivity toward ß-gal with a detection limit as low as 0.0122 U mL-1. The confocal imaging investigation demonstrated the potential of gal-HCA in monitoring the endocellular overexpressed ß-gal in senescent cells and ovarian cancer cells. This study provides a straightforward approach for the development of fluorescent probes to monitor ß-gal and detection of ß-gal-associated diseases.


Assuntos
Chalconas , Neoplasias Ovarianas , Feminino , Humanos , Corantes Fluorescentes/química , Prótons , Neoplasias Ovarianas/diagnóstico por imagem , Imagem Óptica/métodos , beta-Galactosidase
5.
Nat Commun ; 15(1): 507, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218947

RESUMO

Harvesting biomechanical energy from cardiac motion is an attractive power source for implantable bioelectronic devices. Here, we report a battery-free, transcatheter, self-powered intracardiac pacemaker based on the coupled effect of triboelectrification and electrostatic induction for the treatment of arrhythmia in large animal models. We show that the capsule-shaped device (1.75 g, 1.52 cc) can be integrated with a delivery catheter for implanting in the right ventricle of a swine through the intravenous route, which effectively converts cardiac motion energy to electricity and maintains endocardial pacing function during the three-week follow-up period. We measure in vivo open circuit voltage and short circuit current of the self-powered intracardiac pacemaker of about 6.0 V and 0.2 µA, respectively. This approach exhibits up-to-date progress in self-powered medical devices and it may overcome the inherent energy shortcomings of implantable pacemakers and other bioelectronic devices for therapy and sensing.


Assuntos
Marca-Passo Artificial , Suínos , Animais , Endocárdio , Próteses e Implantes , Eletricidade , Ventrículos do Coração
6.
J Inflamm Res ; 16: 3699-3714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663757

RESUMO

Objective: Stroke is a kind of cerebrovascular disease with high mortality. TMAO has been shown to aggravate stroke outcomes, but its mechanism remains unclear. Materials and Methods: Mice were fed with 0.12% TMAO for 16 weeks. Then, mice were made into MCAO/R models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were assessed. Since microglia played a crucial role in ischemic stroke, microglia of MCAO/R mice were isolated for high-throughput sequencing to identify the most differentially expressed gene following TMAO treatment. Afterward, the downstream pathways of TMAO were investigated using primary microglia. Results: TMAO promoted the release of inflammatory cytokines in the brain of MCAO/R mice and promoted the activation of OGD/R microglial inflammasome, thereby exacerbating ischemic stroke outcomes. FTO/IGF2BP2 inhibited NLRP3 inflammasome activation in OGD/R microglia by downregulating the m6A level of NLRP3. TMAO can inhibit the expression of FTO and IGF2BP2, thus promoting the activation of NLRP3 inflammasome in OGD/R microglia. In conclusion, these results demonstrated that TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in ischemic stroke through FTO/IGF2BP2. Conclusion: Our results demonstrated that TMAO promotes NLRP3 inflammasome activation of microglia aggravating neurological injury in ischemic stroke through FTO/IGF2BP2. These findings explained the molecular mechanism of TMAO aggravating ischemic stroke in detail and provided molecular mechanism for clinical treatment.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37132137

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a typical neurodegenerative disease with a complex etiology. Until now, there has been no effective treatment available for AD; however, improving energy dysmetabolism, the key pathological event in the early stage of AD, can effectively delay the progression of AD. OBJECTIVE: This paper aims to investigate the therapeutic effect and potential mechanism of the new Tiaoxin recipe on early AD. METHODS: APP/PS1 mice were divided into a model group, a new Tiaoxin recipe group, and a donepezil group, and C57/BL mice were used for the control group. Mouse cognitive and learning abilities were tested using the Morris water maze test and a new object-recognition experiment. The 42 amino acid form of amyloid ß peptide (Aß1-42) content was detected by enzyme-linked immunosorbent assay, the senile plaque area was detected by thioflavin S staining, and the senescence-associated ß-galactosidase (SA-ß-gal)-positive area was detected by chemical staining. Also, the adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and nicotinamide adenine dinucleotide hydride (NADH) contents were detected using a biochemical method, and the cluster of differentiation 38 (CD38) and silent mating-type information regulation 2 homolog 3 (SIRT3) protein expression levels were detected by immunofluorescence and Western blot analysis. RESULTS: Compared with those of the control group, the learning and memory abilities of the model group were impaired; the senile plaque deposition, Aß1-42 content, and SA-ßgal-positive staining area were increased; the ATP concentration, NAD+ concentration, and NAD+/NADH ratio were decreased; the CD38 protein expression level was increased; and the SIRT3 protein expression level was decreased. Following intervention with the new Tiaoxin recipe, the learning and memory abilities were improved; the senile plaque deposition, Aß1-42 content, and SA-ßgal-positive area were reduced; the ATP concentration, NAD+ concentration, and NAD+/NADH ratio were increased; CD38 protein expression was decreased, and SIRT3 protein expression was increased. CONCLUSION: This study shows that the new Tiaoxin Recipe can improve cognitive ability and reduce the Aß1-42 content and senile plaque deposition in APP/PS1 mice, which may occur through the downregulation of CD38 protein expression, upregulation of SIRT3 protein expression, restoration of the NAD+ level, promotion of ATP synthesis, mitigation of energy metabolism disorders.

8.
Comb Chem High Throughput Screen ; 26(14): 2502-2516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056062

RESUMO

BACKGROUND: Doxorubicin-induced heart failure is a clinical problem that needs to be solved urgently. Previous studies have confirmed that Zhenwu Decoction, a traditional Chinese medicine compound, can effectively improve chronic heart failure. However, its interventional effect on Doxorubicin-induced heart failure has not yet been investigated. In this study, we investigated the therapeutic effect and potential mechanism of Zhenwu Decoction on Doxorubicininduced heart failure through animal experiments and network pharmacology. OBJECTIVE: The study aimed to investigate the therapeutic effect and potential mechanism of Zhenwu Decoction (ZWD) on Doxorubicin-induced heart failure. METHODS: A heart-failure mouse model was established in 8-week-old male C57/BL6J mice using Doxorubicin, and the mice were then treated with ZWD for a 4-week period. Firstly, network pharmacology was conducted to explore the potential active components and molecular mechanisms of ZWD on Doxorubicin-induced heart failure. Next, we conducted an in vivo study on the effect of ZWD on Doxorubicin-induced heart failure. After the intervention, the cardiac function and levels of cardiac function injury marker in serum were measured to evaluate the therapeutic effect of ZWD on cardiac function. Then HE staining and Masson staining were used to evaluate the effect of ZWD on myocardial pathology, and biochemical method was used to detect the effect of ZWD on total antioxidant capacity and inflammation, and finally, Western blot was used to detect TGFß, Smad-3, and collagen I protein expression levels to evaluate its effect on myocardial fibrosis. RESULTS: In Doxorubicin-induced heart failure mice, ZWD improved cardiac function and reduced the levels of CK-MB, NT-proBNP, and BNP in the serum, improved myocardial pathology, and reduced TGFß, Smad-3 and collagen I protein expression levels to improve myocardial fibrosis. Network pharmacological analysis showed that ZWD has 146 active ingredients and 248 candidate targets. Moreover, 2,809 genes were found to be related to Doxorubicin-induced heart failure, and after screening, 74 common targets were obtained, mainly including IL-6, AKT1, caspase-3, PPARG, PTGS2, JUN, HSP90AA1, and ESR1. KEGG analysis confirmed that PI3K/AKT and IL- 6/NF-κB signaling pathways were the two main pathways underlying the cardioprotective effects of ZWD. Finally, in vivo experiments showed that ZWD improved the total antioxidant capacity, reduced the SOD level, increased the protein expression of PI3K, Akt, Bcl-2, Bax, and caspase-3, reduced the levels of TNF-α, IL-6, and IL-1ß, and decreased the NF-κB p65, IL-6, and TNF-α protein expression levels. CONCLUSION: In Doxorubicin-induced heart-failure mice, Zhenwu Decoction improved the cardiac function and myocardial pathology, and improved myocardial fibrosis through the TGFß/Smad-3 signaling pathway. According to the prediction of network pharmacology, in vivo experiments demonstrated that Zhenwu Decoction can improve the oxidative stress response, improve myocardial cell apoptosis through the PI3K/AKT signaling pathway, and improve myocardial inflammation by reducing the levels of inflammatory factors and by reducing the protein expression of NF- κB p65, IL-6, and TNF-α.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Masculino , Camundongos , Animais , Caspase 3 , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa , Antioxidantes/uso terapêutico , Interleucina-6 , Fosfatidilinositol 3-Quinases , Farmacologia em Rede , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doxorrubicina/efeitos adversos , Inflamação/tratamento farmacológico , Modelos Teóricos , Fibrose
9.
J Cardiovasc Electrophysiol ; 34(4): 997-1005, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758949

RESUMO

BACKGROUND AND OBJECTIVE: Left bundle branch pacing (LBBP) has shown the benefits in the treatment of dyssynchronous heart failure (HF). The purpose of this study was to develop a novel approach for LBBP and left bundle branch block (LBBB) in a canine model. METHODS: A "triangle-center" method by tricuspid valve annulus angiography for LBBP implantation was performed in 6 canines. A catheter was then applied for retrograde His potential recording and left bundle branch (LBB) ablation simultaneously. The conduction system was stained to verify the "triangle-center" method for LBBP and assess the locations of the LBB ablation site in relation to the left septal fascicle (LSF). RESULTS: The mean LBB potential to ventricular interval and stimulus-peak left ventricular activation time were 11.8 ± 1.2 and 35.7 ± 3.1 ms, respectively. The average intrinsic QRS duration was 44.7 ± 4.7 ms. LBB ablation significantly prolonged the QRS duration (106.3 ± 8.3 ms, p < .001) while LBBP significantly shortened the LBBB-QRS duration to 62.5 ± 5.3 ms (p < .001). After 6 weeks of follow-up, both paced QRS duration (63.0 ± 5.4 ms; p = .203) and LBBB-QRS duration (107.3 ± 7.4 ms; p = .144) were unchanged when comparing to the acute phase, respectively. Anatomical analysis of 6 canine hearts showed that the LBBP lead-tip was all placed in LSF area. CONCLUSION: The new approach for LBBP and LBBB canine model was stable and feasible to simulate the clinical dyssynchrony and resynchronization. It provided a useful tool to investigate the basic mechanisms of underlying physiological pacing benefits.


Assuntos
Fascículo Atrioventricular , Bloqueio de Ramo , Animais , Cães , Estimulação Cardíaca Artificial/métodos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco
10.
Pharmacol Res Perspect ; 11(1): e01036, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537346

RESUMO

ABBV-47D11 is a neutralizing monoclonal antibody that targets a mutationally conserved hydrophobic pocket distal to the ACE2 binding site of SARS-CoV-2. This first-in-human safety, pharmacokinetics, and antiviral pharmacodynamic assessment in patients with COVID-19 provide an initial evaluation of this antibody that may allow further development. This multicenter, randomized, double-blind, and placebo-controlled single ascending dose study of ABBV-47D11 (180, 600, or 2400 mg) as an intravenous infusion, was in hospitalized and non-hospitalized (confined) adults with mild to moderate COVID-19. Primary outcomes were grade 3 or higher study drug-related adverse events and infusion-related reactions. Secondary outcomes were pharmacokinetic parameters and concentration-time profiles to Day 29, immunogenicity (anti-drug antibodies), and antiviral activity (change in RT-PCR viral load) from baseline to Days 15 and 29. ABBV-47D11 single doses up to 2400 mg were safe and tolerated and no safety signals were identified. The pharmacokinetics of ABBV-47D11 were linear and showed dose-proportional increases in serum concentrations with ascending doses. The exploratory anti-SARS-CoV-2 activity revealed a reduction of viral load at and above the 600 mg dose of ABBV-47D11 regardless of patient demographics and baseline characteristics, however; because of the high inter-individual variability and small sample size a statistical significance was not reached. There is potential for anti-SARS-CoV-2 activity with ABBV-47D11 doses of 600 mg or higher, which could be evaluated in future clinical trials designed and powered to assess viral load reductions and clinical benefit.


Assuntos
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Anticorpos Monoclonais/farmacocinética , Antivirais , Anticorpos Neutralizantes
11.
Nat Commun ; 13(1): 7814, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535919

RESUMO

Graphene's original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon-ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics.

12.
Open Forum Infect Dis ; 9(5): ofac104, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35493119

RESUMO

Background: Few therapies are approved for hospitalized patients with severe coronavirus disease 2019 (COVID-19). Ibrutinib, a once-daily Bruton tyrosine kinase inhibitor, may mitigate COVID-19-induced lung damage by reducing inflammatory cytokines. The multicenter, randomized, double-blind phase 2 iNSPIRE study evaluated ibrutinib for prevention of respiratory failure in hospitalized patients with severe COVID-19. Methods: Adult patients with severe COVID-19 requiring hospitalization and supplemental oxygen but without respiratory failure were randomized 1:1 (stratified by remdesivir prescription) to ibrutinib 420 mg or placebo once daily for up to 28 days plus standard of care (SOC), including remdesivir and/or dexamethasone. Results: Forty-six patients were randomized to ibrutinib plus SOC (n = 22) or placebo plus SOC (n = 24). The primary endpoint (proportion of patients alive and without respiratory failure through day 28) was not met, with no statistically significant difference adjusting for remdesivir prescription (86% with ibrutinib plus SOC vs 79% with placebo plus SOC; adjusted difference, 5.8% [80% confidence interval, -9.2% to 20.4%]; P = .599). Secondary endpoints also showed no statistically significant improvement with ibrutinib plus SOC. Median treatment duration was 14 days for ibrutinib and placebo. Adverse events were similar with ibrutinib plus SOC vs placebo plus SOC (overall: 55% vs 50%; serious: 18% vs 13%) and were consistent with the known safety profile of ibrutinib. Conclusions: Addition of ibrutinib to SOC did not improve the proportion of patients alive and without respiratory failure through day 28 in hospitalized patients with severe COVID-19. Ibrutinib had a manageable safety profile, with similar safety to placebo. Clinical Trials Registration: NCT04375397.

13.
Int J Gen Med ; 15: 4409-4416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502185

RESUMO

Background: Not all patients with heart failure derive consistent benefit from prophylactic implantable cardioverter-defibrillator (ICD). We aimed to evaluate the role of MADIT-ICD benefit score in risk-stratifying in Asian patients with left ventricular ejection fraction (LVEF) ≤35%. Methods: In this two-center, retrospective study, a total of 136 patients with LVEF ≤35% who received an ICD for primary prevention were enrolled. The endpoints were defined as the ventricular tachycardia ≥200bpm (VT) or ventricular fibrillation (VF) and non-arrhythmic death. Based on the MADIT-ICD benefit score system, all patients were categorized into three groups: highest benefit group (n = 41), intermediate benefit group (n = 80), and lowest benefit group (n = 15). Results: Forty patients experienced VT/VF and seven died of non-arrhythmic causes during a median follow-up of 44.8 ± 28.9 months. Kaplan-Meier curves showed that patients in highest benefit group had a worse VT/VF occurrence compared to those in other groups. In the highest benefit group, the predicted risk of VT/VF was 17-fold higher than the risk of non-arrhythmic mortality (41.5% vs 2.4%, P < 0.001). In the intermediate benefit group, the predicted risk of VT/VF was 4.2-fold higher than the risk of non-arrhythmic mortality (26.3% vs 6.3%, P = 0.001). In the lowest benefit group, however, the difference in the corresponding predicted risks was attenuated without statistically significant (13.3% vs 5.1%, P = 0.56). Conclusion: We demonstrate that MADIT-ICD benefit score can be used for the assessment of ICD primary prevention benefits in Asian patients with LVEF ≤35%.

14.
Bioorg Med Chem ; 66: 116794, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576654

RESUMO

To overcome drug resistance caused by ALK kinase mutations especially G1202R, two series of novel 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety were designed, synthesized and evaluated for their biological activities. Among all the target compounds, B10 efficiently inhibited the proliferation of ALK-positive Karpas299 and H2228 cells both with IC50 values of 0.07 µM. In addition, B10 exhibited remarkable enzymatic inhibitory potency with IC50 values of 4.59 nM, 2.07 nM and 5.95 nM toward ALKWT, ALKL1196M and ALKG1202R, respectively. Furthermore, B10 induced apoptosis in H2228 cell and caused cell cycle arrest in G2/M phase. Ultimately, the binding modes of B10 with ALKWT and ALKG1202R were ideally established, which further confirmed the structural basis in accordance with the SARs analysis. These results indicated that B10 was a potent ALK inhibitor for ALKG1202R mutation treatment and deserved for further investigation.


Assuntos
Antineoplásicos , Pirimidinas , Quinase do Linfoma Anaplásico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
15.
Contemp Clin Trials ; 119: 106758, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35398251

RESUMO

In clinical trials with the objective to evaluate the treatment effect on time to recovery, such as investigational trials on therapies for COVID-19 hospitalized patients, the patients may face a mortality risk that competes with the opportunity to recover (e.g., be discharged from the hospital). Therefore, an appropriate analytical strategy to account for death is particularly important due to its potential impact on the estimation of the treatment effect. To address this challenge, we conducted a thorough evaluation and comparison of nine survival analysis methods with different strategies to account for death, including standard survival analysis methods with different censoring strategies and competing risk analysis methods. We report results of a comprehensive simulation study that employed design parameters commonly seen in COVID-19 trials and case studies using reconstructed data from a published COVID-19 clinical trial. Our research results demonstrate that, when there is a moderate to large proportion of patients who died before observing their recovery, competing risk analyses and survival analyses with the strategy to censor death at the maximum follow-up timepoint would be able to better detect a treatment effect on recovery than the standard survival analysis that treat death as a non-informative censoring event. The aim of this research is to raise awareness of the importance of handling death appropriately in the time-to-recovery analysis when planning current and future COVID-19 treatment trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Morte , Simulação por Computador , Humanos , Análise de Sobrevida
16.
Biol Res ; 55(1): 10, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241173

RESUMO

BACKGROUND: In Alzheimer's disease (AD), the neuroinflammatory response mediated by the activation of senescent microglia is closely related to energy dysmetabolism. However, the mechanism underlying the interaction between the energy metabolism of aging microglia and neuroinflammation remains unclear. METHODS: We used biochemical methods, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and western blot to determine the effects and mechanism of CD38 knockdown on energy metabolism and neuroinflammation in Aß1-40 injured BV2 cells. Using AD model mice, we detected CD38 enzyme activity, energy metabolism factors (ATP, NAD +, and NAD + /NADH), and neuroinflammatory factors (IL-1ß, IL-6, and TNF-α) following the addition of CD38 inhibitor. Using a combination of biochemical analysis and behavioral testing, we analyzed the effects of the CD38 inhibitor on energy metabolism disorder, the neuroinflammatory response, and the cognition of AD mice. RESULTS: Following Aß1-40 injury, SA-ß-Gal positive cells and senescence-related proteins P16 and P21 increased in BV2 cells, while energy-related molecules (ATP, NAD +, and NAD + /NADH) and mitochondrial function (mitochondrial ROS and MMP) decreased. Further studies showed that CD38 knockdown could improve Aß1-40-induced BV2 cells energy dysmetabolism and reduce the levels of IL-1ß, IL-6, and TNF-α. In vivo results showed an increase in senile plaque deposition and microglial activation in the hippocampus and cortex of 34-week-old APP/PS1 mice. Following treatment with the CD38 inhibitor, senile plaque deposition decreased, the number of Iba1 + BV2 cells increased, the energy metabolism disorder was improved, the proinflammatory cytokines were reduced, and the spatial learning ability was improved. CONCLUSIONS: Our results confirm that senescent microglia appeared in the brain of 34-week-old APP/PS1 mice, and that Aß1-40 can induce senescence of BV2 cells. The expression of CD38 increases in senescent BV2 cells, resulting in energy metabolism disorder. Therefore, reducing CD38 expression can effectively improve energy metabolism disorder and reduce proinflammatory cytokines. Following intervention with the CD38 inhibitor in APP/PS1 mice, the energy metabolism disorder was improved in the hippocampus and cortex, the level of proinflammatory cytokines was reduced, and cognitive impairment was improved.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Encéfalo , Modelos Animais de Doenças , Hipocampo , Camundongos , Camundongos Transgênicos , Microglia
17.
J Interv Card Electrophysiol ; 63(1): 175-183, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33616880

RESUMO

PURPOSE: We aimed to evaluate the electrical characteristics and pacing parameters at different locations of His-Purkinje system pacing. METHODS: Patients who successfully underwent His-Purkinje system pacing with bradycardia indications from April 2018 to August 2019 were retrospectively analyzed according to the lead location confirmed by visualization of the tricuspid value annulus, postoperative echocardiography, and pacing electrocardiogram. The electrical characteristics and pacing parameters were compared among these patients. RESULTS: A total of 135 patients were retrospectively analyzed. Among them, 30 patients received atrial side HBP (aHBP group), 52 received ventricular side HBP (vHBP group), and 53 received left bundle branch pacing (LBBP group). The proportion of non-selective pacing was significantly lower in aHBP group (30.0%) than in vHBP (75.0%) and LBBP group (90.6%). LBBP had significantly shorter procedural and fluoroscopic duration than aHBP and vHBP. The capture threshold was significantly higher (1.07 ± 0.26 V/1.0 ms vs. 0.89 ± 0.22 V/1.0 ms vs. 0.77 ± 0.18 V/0.4 ms, P < 0.01, respectively), and the R-wave amplitude was significantly lower (3.71 ± 1.72 mV vs. 5.81 ± 2.37 mV vs. 10.27 ± 4.71 mV, P < 0.05 respectively) in aHBP group than those in the other two groups at implantation and during 3-month follow-up. No significant differences were observed in complications among groups during 3-month follow-up. CONCLUSION: VHBP and LBBP had better pacing performances than aHBP and might be more ideal pacing methods for bradycardia patients.


Assuntos
Bradicardia , Fascículo Atrioventricular , Bradicardia/diagnóstico por imagem , Bradicardia/terapia , Fascículo Atrioventricular/diagnóstico por imagem , Estimulação Cardíaca Artificial , Eletrocardiografia , Sistema de Condução Cardíaco , Humanos , Estudos Retrospectivos , Resultado do Tratamento
18.
Biol. Res ; 55: 10-10, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1383914

RESUMO

BACKGROUND: In Alzheimer's disease (AD), the neuroinflammatory response mediated by the activation of senescent microglia is closely related to energy dysmetabolism. However, the mechanism underlying the interaction between the energy metabolism of aging microglia and neuroinflammation remains unclear. METHODS: We used biochemical methods, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and western blot to determine the effects and mechanism of CD38 knockdown on energy metabolism and neuroinflammation in Aß1-40 injured BV2 cells. Using AD model mice, we detected CD38 enzyme activity, energy metabolism factors (ATP, NAD +, and NAD +/NADH), and neuroinflammatory factors (IL-1ß, IL-6, and TNF-α) following the addition of CD38 inhibitor. Using a combination of biochemical analysis and behavioral testing, we analyzed the effects of the CD38 inhibitor on energy metabolism disorder, the neuroinflammatory response, and the cognition of AD mice. RESULTS: Following Aß1-40 injury, SA-ß-Gal positive cells and senescence-related proteins P16 and P21 increased in BV2 cells, while energy-related molecules (ATP, NAD +, and NAD +/NADH) and mitochondrial function (mitochondrial ROS and MMP) decreased. Further studies showed that CD38 knockdown could improve Aß1-40-induced BV2 cells energy dysmetabolism and reduce the levels of IL-1ß, IL-6, and TNF-α. In vivo results showed an increase in senile plaque deposition and microglial activation in the hippocampus and cortex of 34-week-old APP/PS1 mice. Following treatment with the CD38 inhibitor, senile plaque deposition decreased, the number of Iba1 +BV2 cells increased, the energy metabolism disorder was improved, the proinflammatory cytokines were reduced, and the spatial learning ability was improved. CONCLUSIONS: Our results confirm that senescent microglia appeared in the brain of 34-week-old APP/PS1 mice, and that Aß1-40 can induce senescence of BV2 cells. The expression of CD38 increases in senescent BV2 cells, resulting in energy metabolism disorder. Therefore, reducing CD38 expression can effectively improve energy metabolism disorder and reduce proinflammatory cytokines. Following intervention with the CD38 inhibitor in APP/PS1 mice, the energy metabolism disorder was improved in the hippocampus and cortex, the level of proinflammatory cytokines was reduced, and cognitive impairment was improved.


Assuntos
Animais , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo , Camundongos Transgênicos , Microglia , Modelos Animais de Doenças , Hipocampo
19.
Am J Gastroenterol ; 116(9): 1896-1904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465693

RESUMO

INTRODUCTION: Pangenotypic, all-oral direct-acting antivirals, such as glecaprevir/pibrentasvir (G/P), are recommended for treatment of hepatitis C virus (HCV) infection. Concerns exist about the impact on efficacy in patients with suboptimal adherence, particularly with shorter treatment durations. These post hoc analyses evaluated adherence (based on pill count) in patients prescribed 8- or 12-week G/P, the impact of nonadherence on sustained virologic response at post-treatment week 12 (SVR12), factors associated with nonadherence, and efficacy in patients interrupting G/P treatment. METHODS: Data were pooled from 10 phase 3 clinical trials of treatment-naive patients with HCV genotype 1-6 without cirrhosis/with compensated cirrhosis (treatment adherence analysis) and 13 phase 3 clinical trials of all patients with HCV (interruption analysis). RESULTS: Among 2,149 patients included, overall mean adherence was 99.4%. Over the treatment duration, adherence decreased (weeks 0-4: 100%; weeks 5-8: 98.3%; and weeks 9-12: 97.1%) and the percentage of patients with ≥80% or ≥90% adherence declined. SVR12 rate in the intention-to-treat (ITT) population was 97.7% (modified ITT SVR12 99.3%) and remained high in nonadherent patients in the modified ITT population (<90%: 94.4%-100%; <80%: 83.3%-100%). Psychiatric disorders were associated with <80% adherence, and shorter treatment duration was associated with ≥80% adherence. Among 2,902 patients in the interruption analysis, 33 (1.1%) had a G/P treatment interruption of ≥1 day, with an SVR12 rate of 93.9% (31/33). No virologic failures occurred. DISCUSSION: These findings support the impact of treatment duration on adherence rates and further reinforce the concept of "treatment forgiveness" with direct-acting antivirals.


Assuntos
Ácidos Aminoisobutíricos/uso terapêutico , Antivirais/uso terapêutico , Benzimidazóis/uso terapêutico , Ciclopropanos/uso terapêutico , Hepatite C/tratamento farmacológico , Lactamas Macrocíclicas/uso terapêutico , Leucina/análogos & derivados , Adesão à Medicação , Prolina/análogos & derivados , Pirrolidinas/uso terapêutico , Quinoxalinas/uso terapêutico , Sulfonamidas/uso terapêutico , Idoso , Feminino , Humanos , Leucina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Prolina/uso terapêutico , Resposta Viral Sustentada , Resultado do Tratamento
20.
Adv Mater ; 33(39): e2102302, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369023

RESUMO

Bioresorbable electronics that can be absorbed and become part of the organism after their service life are a new trend to avoid secondary invasive surgery. However, the material limitation is a significant challenge. There are fewer biodegradable materials with pressure-sensitive properties. Here, a pressure sensor based on the triboelectric effect between bioabsorbable materials is reported. This effect is available in almost all materials. The bioresorbable triboelectric sensor (BTS) can directly convert ambient pressure changes into electrical signals. This device successfully identifies abnormal vascular occlusion events in large animals (dogs). The service life of the BTS reaches 5 days with a high service efficiency (5.95%). The BTS offers excellent sensitivity (11 mV mmHg-1 ), linearity (R2  = 0.993), and good durability (450 000 cycles). The antibacterial bioresorbable materials (poly(lactic acid)-(chitosan 4%)) for the BTS can achieve 99% sterilization. Triboelectric devices are expected to be applied in postoperative care as bioresorbable electronics.


Assuntos
Implantes Absorvíveis , Doenças Cardiovasculares/cirurgia , Monitorização Fisiológica/instrumentação , Animais , Materiais Biocompatíveis/química , Doenças Cardiovasculares/fisiopatologia , Cães , Dispneia/fisiopatologia , Eletrônica , Camundongos , Monitorização Fisiológica/métodos , Poliésteres/química , Cuidados Pós-Operatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...